Note: for conservative body forces (e.g., gravity) $\rho b_i = \frac{\partial \psi}{\partial x_i}$ and the force term can be absorbed into the pressure term by modifying it to $\tilde{P} = P - \psi$.

Definition 4.5. For fluids, a flow is **steady** if $\frac{\partial}{\partial t}\mathbf{v}(\mathbf{x},t) = \mathbf{0}$. In this case, the equations of linear momentum balance (4.15) are

$$\rho\left(v_k\frac{\partial}{\partial x_k}\right)v_i = -\rho b_i + \frac{\partial T_{ij}}{\partial x_j}$$

Definition 4.6. A continuum is in equilibrium if $\mathbf{v} = 0$.

In this case, the equations of linear momentum balance (4.15) yield

$$\rho b_i + \frac{\partial}{\partial x_j} T_{ij} = 0.$$

Remark 4.7. The force exerted by a continuum on a body B contained within it (e.g, a body immersed in a fluid) can be determined by integrating the Cauchy stress vector over the boundary of the body. Hence, this force is given by

$$\int_{\partial B} \mathbf{t} \, dA = \int_{\partial B} \mathbf{Tn} \, dA.$$

5 Properties of solutions of the Euler Equations

The main example of a continuum theory which we study in this course will be the Euler equations for flow of an incompressible, ideal fluid:

$$\rho_0 \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla P + \rho_0 \mathbf{b} .$$
(5.1)

We assume that the body force is conservative so that $\mathbf{b} = -\nabla \chi$ (for example, gravity corresponds to $\chi = g \mathbf{x} \cdot \mathbf{e}_3$, where g is the acceleration due to gravity). The conservation of mass equation (3.4) then reduces to the incompressibility condition

$$\nabla \cdot \mathbf{v} = 0 \quad \text{in } \Omega. \tag{5.2}$$

Recall the important concept in the study of fluid flows of the *vorticity* $\boldsymbol{\omega}(\mathbf{x}, t) = (\omega_i(\mathbf{x}, t))$, defined by

$$\boldsymbol{\omega} = \nabla \times \mathbf{v}.\tag{5.3}$$

This is a measure of the rotation inherent in the flow. We say that the flow is *irrotational* if the vorticity (5.3) is identically zero.

5.1 Bernoulli's Theorem

Theorem 5.1. Let $\mathbf{v} = \mathbf{v}(\mathbf{x})$ be a steady solution of the incompressible Euler equations and let the body force satisfy $\mathbf{b} = -\nabla \chi$. Then

$$H = \left(\frac{P}{\rho_0} + \chi + \frac{1}{2}|\mathbf{v}|^2\right)$$

is constant along streamlines of the flow.

Example 5.2 (Applications of Bernoulli's Theorem).

5.2 Kelvin's Circulation Theorem

This states that the circulation around a closed curve in an inviscid incompressible fluid flowing according to the Euler equations (5.1) is constant.

Theorem 5.3. Let $\phi(\mathbf{x}, t)$ be a motion, $\phi : \Omega \times [0, T] \to \mathbb{R}^3$ and suppose that the corresponding spatial velocity field $\mathbf{v}(\mathbf{x}, t)$ satisfies the Euler equations (5.1). Let C be a closed simple curve in the initial configuration Ω and let C_t denote its image at time t under the motion (so that $C_t = \phi(C, t)$). Then the circulation around C_t defined by

$$\Sigma(t) = \int_{C_t} \mathbf{v}.d\mathbf{x}$$

satisfies

$$\frac{d\Sigma(t)}{dt} = 0$$

Proof. This follows by Corollary 3.6 and (5.1):

5.3 Helmholtz Theorems on Vorticity

Definition 5.4. A vortex line at time t is a curve $\mathbf{y}(s)$, $\mathbf{y} : [a, b] \to \Omega_t$ such that $\mathbf{y}(s)$ is tangent to the vorticity vector $\boldsymbol{\omega}(\mathbf{x}, t) \mathbf{x} \in \Omega_t$ and so satisfies

$$\frac{d\mathbf{y}(s)}{ds} = \boldsymbol{\omega}(\mathbf{y}(s), t), \quad s \in [a, b].$$
(5.4)

A vortex tube is a surface made up of the vortex lines passing through a closed contour.

Remark 5.5. (Helmoltz result on conservation of vorticity flux.) Consider a contour curve C, oriented as shown and with corresponding spanning surface S.

Then, by Stokes Theorem,

$$\oint_C \mathbf{v}.d\mathbf{r} = \int_S (\nabla \times \mathbf{v}).\mathbf{n} \, dA = \int_S \boldsymbol{\omega}.\mathbf{n} \, dA, \quad . \tag{5.5}$$

We call $\int_S \boldsymbol{\omega} \cdot \mathbf{n} \, dA$ the flux of vorticity through the surface S and it equals the circulation around the corresponding contour C.

Now consider a vortex tube⁶ as illustrated with end curves C_1, C_2 and bounding surfaces S_1, S_2 as illustrated. Let $\tilde{\Omega}$ be the 3D-domain bounded by S_1, S_2 and the vortex tube surface S_3 . Because we have a vortex tube, it follows that $\boldsymbol{\omega}.\tilde{\mathbf{n}} = 0$ on S_3 where $\tilde{\mathbf{n}}$ is the outward unit normal from $\tilde{\Omega}$. Hence by the Divergence Theorem

$$0 = \int_{\tilde{\Omega}} \nabla .\boldsymbol{\omega} \, dV = \int_{\partial \tilde{\Omega}} \boldsymbol{\omega} . \tilde{\mathbf{n}} \, dA = -\int_{S_1} \boldsymbol{\omega} . (-\tilde{\mathbf{n}}) + \int_{S_2} \boldsymbol{\omega} . \tilde{\mathbf{n}} + \int_{S_3} \boldsymbol{\omega} . \tilde{\mathbf{n}}$$

where the third integral over S_3 is zero, and hence, using (5.5),

$$\oint_{C_1} \mathbf{v}.d\mathbf{r} = \int_{S_1} \boldsymbol{\omega}.(-\tilde{\mathbf{n}}) \, dA = \int_{S_2} \boldsymbol{\omega}.\tilde{\mathbf{n}} \, dA = \oint_{C_2} \mathbf{v}.d\mathbf{r}$$

This illustrates that if the tube narrows, then the vorticity flux through a cross-section of the tube at that point must increase.

Remark 5.6. We will show, using the next two results, that vortex lines are transported by the flow of an incompressible, ideal fluid.

⁶i.e., a tube in the flow whose sides are made up of vortex lines.