
Note: for conservative body forces (e.g., gravity) ρbi = ∂ψ
∂xi

and the force term can be

absorbed into the pressure term by modifying it to P̃ = P − ψ.

Definition 4.5. For fluids, a flow is steady if ∂
∂tv(x, t) = 0. In this case, the equations

of linear momentum balance (4.15) are

ρ

(
vk

∂

∂xk

)
vi = −ρbi +

∂Tij
∂xj

.

Definition 4.6. A continuum is in equilibrium if v = 0.

In this case, the equations of linear momentum balance (4.15) yield

ρbi +
∂

∂xj
Tij = 0.

Remark 4.7. The force exerted by a continuum on a body B contained within it (e.g, a
body immersed in a fluid) can be determined by integrating the Cauchy stress vector over
the boundary of the body. Hence, this force is given by∫

∂B
t dA =

∫
∂B

Tn dA.

5 Properties of solutions of the Euler Equations

The main example of a continuum theory which we study in this course will be the Euler
equations for flow of an incompressible, ideal fluid:

ρ0

(
∂v

∂t
+ (v · ∇)v

)
= −∇P + ρ0b . (5.1)

We assume that the body force is conservative so that b = −∇χ (for example, gravity
corresponds to χ = g x.e3, where g is the acceleration due to gravity). The conservation
of mass equation (3.4) then reduces to the incompressibility condition

∇ · v = 0 in Ω. (5.2)

Recall the important concept in the study of fluid flows of the vorticity ω(x, t) = (ωi(x, t)),
defined by

ω = ∇× v. (5.3)

This is a measure of the rotation inherent in the flow. We say that the flow is irrotational
if the vorticity (5.3) is identically zero.

5.1 Bernoulli’s Theorem

Theorem 5.1. Let v = v(x) be a steady solution of the incompressible Euler equations
and let the body force satisfy b = −∇χ. Then

H =

(
P

ρ0
+ χ+

1

2
|v|2

)
is constant along streamlines of the flow.



Proof. See Problem sheet 5, Q3.

Example 5.2 (Applications of Bernoulli’s Theorem).

5.2 Kelvin’s Circulation Theorem

This states that the circulation around a closed curve in an inviscid incompressible fluid
flowing according to the Euler equations (5.1) is constant.

Theorem 5.3. Let φ(x, t) be a motion, φ : Ω × [0, T ] → R3 and suppose that the corre-
sponding spatial velocity field v(x, t) satisfies the Euler equations (5.1). Let C be a closed
simple curve in the initial configuration Ω and let Ct denote its image at time t under the
motion (so that Ct = φ(C, t)). Then the circulation around Ct defined by

Σ(t) =

∫
Ct

v.dx

satisfies
dΣ(t)

dt
= 0.

Proof. This follows by Corollary 3.6 and (5.1):

5.3 Helmholtz Theorems on Vorticity

Definition 5.4. A vortex line at time t is a curve y(s), y : [a, b]→ Ωt such that y(s) is
tangent to the vorticity vector ω(x, t) x ∈ Ωt and so satisfies

dy(s)

ds
= ω(y(s), t), s ∈ [a, b]. (5.4)

A vortex tube is a surface made up of the vortex lines passing through a closed contour.



Remark 5.5. (Helmoltz result on conservation of vorticity flux.) Consider a
contour curve C, oriented as shown and with corresponding spanning surface S.

Then, by Stokes Theorem,∮
C

v.dr =

∫
S

(∇× v).n dA =

∫
S
ω.n dA, . (5.5)

We call
∫
S ω.n dA the flux of vorticity through the surface S and it equals the circulation

around the corresponding contour C.

Now consider a vortex tube6 as illustrated with end curves C1, C2 and bounding surfaces
S1, S2 as illustrated. Let Ω̃ be the 3D-domain bounded by S1, S2 and the vortex tube surface
S3. Because we have a vortex tube, it follows that ω.ñ = 0 on S3 where ñ is the outward
unit normal from Ω̃. Hence by the Divergence Theorem

0 =

∫
Ω̃
∇.ω dV =

∫
∂Ω̃
ω.ñ dA = −

∫
S1

ω.(−ñ) +

∫
S2

ω.ñ +

∫
S3

ω.ñ

where the third integral over S3 is zero, and hence, using (5.5),∮
C1

v.dr =

∫
S1

ω.(−ñ) dA =

∫
S2

ω.ñ dA =

∮
C2

v.dr.

This illustrates that if the tube narrows, then the vorticity flux through a cross-section of
the tube at that point must increase.

Remark 5.6. We will show, using the next two results, that vortex lines are transported
by the flow of an incompressible, ideal fluid.

6i.e., a tube in the flow whose sides are made up of vortex lines.




